Press "Enter" to skip to content

e-Waste

Electronic waste or e-waste refers to discarded electric appliances. Each year, about 50 to 60 million tons of e-waste are generated, equivalent to only 2-3% of annual global waste. Yet, the damage that this amount of waste poses to our health and the environment may exceed the destructive power of all other wastes combined. Since e-waste contains toxic materials, such as lead, cadmium, and beryllium, once it is exposed to strong UV radiation or corrodes due to any other physical or chemical reasons, toxic materials could be released into the atmosphere, infiltrate the soil, and flow into the water bodies nearby, affecting public health. 

This alone should prompt people not to throw e-waste into rubbish bins; you should check out if any governmental or private organisations offer services, sometimes free of charge, to collect e-waste from your homes. This includes large electronic devices such as air conditioners, refrigerators, and televisions. Often, these organisations or enterprises ensure the valuable parts of your e-waste are extracted for potential second uses, and harmful materials are separated before disposing the rest to landfills.

E waste recycling has all sorts of benefits in addition to the protection of human health and the environment. Most of the materials that make up our computers and smartphones are derived from non-renewable minerals; recycling these materials can prevent the supply of consumer goods that become inevitable in our lives from being suspended until substitutions are discovered. Although in certain cases, the non-renewable resources are not necessarily rare, the recycling of non-renewable but common minerals still has economic benefits. 

For example, the price of lithium, a non-renewable but relatively common mineral that can almost be found everywhere, has been booming. Lithium is widely used in multiple industries but is most known for its importance in the production of rechargeable batteries for electric vehicles. The increased public attention on electric vehicles as a way to decarbonise transportation saw the demand for lithium soar. Yet, the market has failed to keep up with this sudden surge in demand, causing lithium to be in short supply – not scarcity but from the slow pace of extraction and refinement. Recycling lithium-ion batteries will provide an additional supply of lithium to the market, allowing businesses to produce batteries and electric vehicles that are customer-friendly as well as environmental-friendly at a lower price.